Algebra (Q 2 \& 3, Paper 1)

Lesson No. 1: Some Basics

2006

2 (a) Simplify $3(2 x+4)-5(x+1)$.
2 (c) (ii) The lengths of the sides of a triangle are
$4 \sqrt{x},(x-4)$ and $(x+4)$, where $x>4$.
Prove that the triangle is right-angled.

Solution

2 (a)
$3(2 x+4)-5(x+1)$
$=6 x+12-5 x-5$
Multiply every term by every term and then tidy up by adding and subtracting like terms.
$=x+7$
2 (c) (ii)
The longest side is the hypotenuse. How do you know which side is the longest?

$$
x^{2}+y^{2}=r^{2} \text {....... }
$$

Put a number like 9 in for x and you will see which is the longest side.
If it is right-angled, you need to show that

$$
(4 \sqrt{x})^{2}+(x-4)^{2}=(x+4)^{2}
$$

$$
\begin{array}{l|l}
\text { LHS } & \text { RHS } \\
(4 \sqrt{x})^{2}+(x-4)^{2} & (x+4)^{2} \\
=16 x+x^{2}-8 x+16 & =x^{2}+8 x+16 \\
=x^{2}+8 x+16 &
\end{array}
$$

