## Algebra (Q 2 \& 3, Paper 1)

## Lesson No. 9: Functions

## 2006

2 (b) Let $f(x)=2 x^{3}+a x^{2}+b x+14$.
(i) Express $f(2)$ in terms of $a$ and $b$.
(ii) If $f(2)=0$ and $f(-1)=0$, find the value of $a$ and the value of $b$.

## 2004

3 (c) $p$ is a positive number and $f$ is the function $f(x)=(2 x+p)(x-p), x \in \mathbf{R}$.
(i) Given that $f(2)=0$, find the value of $p$.
(ii) Hence, find the range of values of $x$ for which $f(x)<0$.

## 2002

3 (c) Let $f(x)=x^{2}+a x+t$ where $a, t \in \mathbf{R}$.
(i) Find the value of $a$, given that $f(-5)=f(-1)$.
(ii) Given that there is only one value of $x$ for which the $f(x)=0$, find the value of $t$.

## 2001

3 (c) Let $f(x)=x^{3}+a x^{2}+b x-6$ where $a$ and $b$ are real numbers.
Given that $x-1$ and $x-2$ are factors of $f(x)$
(i) find the value of $a$ and the value of $b$
(ii) hence, find the values of $x$ for which $f(x)=0$.

## 2000

3 (c) (i) $f(x)=a x^{2}+b x-8$, where $a$ and $b$ are real numbers.
If $f(1)=-9$ and $f(-1)=3$, find the value of $a$ and the value of $b$.
(ii) Using your values of $a$ and $b$ from (i), find the two values of $x$ for which $a x^{2}+b x=b x^{2}+a x$.

## 1997

3 (c) Let $f(x)=(2+x)(3-x), x \in \mathbf{R}$.
Write down the solutions (roots) of $f(x)=0$.
Let $g(x)=3 x-k$.
The equation $f(x)+g(x)=0$ has equal roots. Find the value of $k$.

## 1996

3 (c) Let $f(x)=(1-x)(2+x), x \in \mathbf{R}$.
Write down the solutions of $f(x)=0$.
Find the range of values of $x$ for which $f(x)>0$.
Let $g(x)=f(x)-f(x+1)$.
Express $g(x)$ in the form $a x+b, a, b \in \mathbf{R}$.
Find the solution set of $g(x)<0$.

## Answers

20062
2 (b) (i) $4 a+2 b+30$
(ii) $a=-9, b=3$
2004
3 (c) (i) $p=2$
(ii) $-1<x<2$
2002
3 (c) (i) $a=6$
(ii) $t=9$
2001
3 (c) (i) $a=-6, b=11$
(ii) $x=1,2,3$
2000
3 (c) (i) $a=5, b=-6$
(ii) $x=0,1$
19973 (c) $x=-2,3 ; k=10$
19963 (c) $x=-2,1 ;-2<x<1 ; g(x)=2 x+2 ; x<-1$

