Algebra (Q 2 \& 3, Paper 1)

2008
2 (a) Simplify $3(4 x+5)-2(6 x+4)$.
(b) (i) Solve $x^{2}-4 x+1=0$.

Write your solutions in the form $a \pm \sqrt{b}$, where $a, b \in \mathbf{N}$.
(ii) Find the value of x for which

$$
\frac{5^{x}}{3}=\frac{5^{6}}{75} .
$$

(c) (i) Factorise $x^{2}+4 x+4$.
(ii) Simplify $\sqrt{x^{2}+4 x+4}+\sqrt{x^{2}+2 x+1}$, given that $x \geq 0$.
(iii) Given that $x \geq 0$, solve for x

$$
\sqrt{x^{2}+4 x+4}+\sqrt{x^{2}+2 x+1}=x^{2} .
$$

3 (a) Given that $a(x+5)=8$, express x in terms of a.
(b) (i) Solve for x and y

$$
\begin{gathered}
x-y=1 \\
x^{2}+y^{2}=25 .
\end{gathered}
$$

(ii) Hence, find the two possible values of $x-y^{2}$.
(c) (i) Let $f(x)=x^{2}+b x+c, x \in \mathbf{R}$.

The graph of the function f intersects the y-axis at 3 and the x-axis at -1 .
Find the value of b and the value of c.
(ii) The lengths of the sides of an isosceles triangle are $\sqrt{x^{2}+1}, \sqrt{x^{2}+1}$ and $2 x$.

Taking $2 x$ as the base, find the perpendicular height of the triangle.

Answers

2 (a) 7
(b) (i) $2 \pm \sqrt{3}$
(ii) $x=4$
(c) $($ i) $(x+2)(x+2)$
(ii) $2 x+3$
(iii) $x=3$

3 (a) $x=\frac{8-5 a}{a}$
$\begin{array}{ll}\text { (b) (i) } x=3, y=4 ; x=-3, y=-4 & \text { (ii) }-19,-5\end{array}$
(c) (i) $b=4, c=3$
(ii) 1

