LC Question

Find the area of the bounded region enclosed by the line $y=2 x-1$, the line $x=4$ and the curve $y=\frac{1}{x}$, where $x>0$.

Solution: Draw each curve.
$x=4$ is a vertical line passing through $x=4$ on the X -axis.
$y=2 x-1:(0,-1),\left(\frac{1}{2}, 0\right)$ intercepts
$y=\frac{1}{x}$ is a rational curve. Asymptotes are $x=0$ (Y-axis) and $y=0$ (X-axis).
You need to find the yellow area bounded by the three curves.

You need to find out where $y=\frac{1}{x}$ and $y=2 x-1$ intersect. Equate the two equations.
$\therefore \frac{1}{x}=2 x-1 \Rightarrow 2 x^{2}-x-1=0 \Rightarrow(2 x+1)(x-1)=0$
$\Rightarrow x=-\frac{1}{2}, 1 \Rightarrow x=1(x>0)$
Shaded area: $A=\int_{1}^{4}(2 x-1) d x-\int_{1}^{4} \frac{1}{x} d x=\left[x^{2}-x-\ln x\right]_{1}^{4}$
$=\left[\left(4^{2}-4-\ln 4\right)-\left(1^{2}-1-\ln 1\right)\right]=12-\ln 4$

